
Northern Michigan University (Marquette Co, MI)

CS422-01-25W: Algorithms (Andrew A. Poe) Name: ______________________________________
Quiz 1 Monday 27 January 2025 9:00 A.M. EST

Time: 15 minutes

public class LinkedListNode {

 private int value;
 private LinkedListNode next;
}

Write this method as part of the LinkedListNode class: public LinkedListNode split ()
{...}

split(), on the portion of the list beginning with this , will remove half of the nodes from the
list and put them into another list, and return a pointer to the first element of the new list. So,
half of the nodes will be reachable from this , and the other half will be reachable from a new
pointer that will be returned. I do not care what order the nodes are in when all the work is done.
If there are an odd number of nodes, I do not care which list gets the extra one. Do not create
nodes or change the data fields within existing nodes. Do this by pointer manipulation only. Do
not use loops; use recursion only.

For example, this-->1-->2-->3-->4-->5:

split() might render this to be 1-->2-->3 , and the new pointer to 4-->5 ; this would be one
valid way to do this.

There is no need for the LinkedList class, so I didn't define one. There is no need to use a head
variable. You may assume that LinkedListNode has reasonable sets and gets. You do not need a
constructor for this problem.

public int length() {

 if (next==null) return 1;
 return 1+next.length();
}

public LinkedListNode beforebreak(int s) {

 if (s==0) return this;
 return next->beforebreak (s-1);
}

public LinkedListNode split () {

 int l = length();
 LinkedListNode lln = beforebreak ((l-1)/2);
 LinkedListNode nh = lln.getnext();
 nh.setnext(null);
 return nh;
}

Northern Michigan University (Marquette Co, MI)

CS422-01-25W: Algorithms (Andrew A. Poe) Name: ______________________________________
Quiz 1 Monday 27 January 2025 9:00 A.M. EST

OR

public void split () {

 if (next==null) return null;
 LinkedListNode n = next;
 next = n.split();
 return n;
}

