
NMU PROGRAMMING CONTEST #7
Saturday 18 March 2006

1. A team consists of at most three members. Each team will have a single computer at its disposal to develop
solutions to the assigned problems. The team may share use of the computer in any way it sees fit to do so. The
team may solve the problems individually or collectively at its discretion. However, a team member may not
communicate—personally, electronically, or otherwise—with anyone other than a judge (via runner) or another
member of the same team during the contest.

2. The judges will be happy to answer questions of clarification during the contest and are willi ng to assist with
technical diff iculties, but they cannot provide any hints or information relating to how the problems should be
solved.

3. There are 6 problem specifications and 5 hours in which to solve them. The problems need not be of equivalent
diff iculty with each other and are given in no particular order. The team may solve the problems with the C, C++,
or Java languages. The team is not constrained to using the same language for each problem; each problem is solved
completely independently of the others. If a problem is solved with C or C++, the team is to generate a single file
called prob* .exe , where * (defined here and used hereafter) is the digit between 1 and 6 corresponding to the
problem being solved, a DOS executable file compatible with Windows XP, the system on which the problems will
be judged. If a problem is solved with Java, the team is to generate a single file called prob* .jar , an executable
Java file, which will also be run in the Windows XP environment. Compilers for C, C++, and Java will be provided.
The Java provided will be the most recent version at the time of the imaging of the laptops for the contest, and will
be no earlier than 1.5.0_06. It should be understood that the problems were defined with Java in mind, and that the
off icial solutions will be in Java. The team may use any printed reference materials during the contest but is
disallowed from using the Internet and from using media (such as magnetic or optical) specifically designed for
computer reading.

4. The executed program will open an existing file, prob* .in , for reading, and will create and open a file,
prob* .out, for writing. The program must use these files and no others. The use of other files will cause the
program to fail during judicial testing. Any output sent to the screen will be ignored by the judges; only the output
sent to prob* .out will be evaluated. The judge will not enter information to the program via the keyboard, so any
attempt to read from the keyboard will cause the program to hang during judicial testing, thus disquali fying it (see
below). If Java is used to solve a problem, it must be run as an application, rather than an applet; applets cannot
access or modify files. Any graphical output will be ignored; any request for GUI input will be ignored, thus
disquali fying the program, as above.

5. prob* .in and prob* .out are text files. They will be constrained to containing only the 94 visible ASCII
characters, the space character (no program will be required to parse or print a <TAB> character) and the end-of-
line character, which varies between systems and will be denoted by <EOLN>. In the Windows/DOS environment,
<EOLN> is actually represented by two consecutive ASCII characters: 13,10. Most programming languages
developed for the Windows environment handle this two-byte representation naturally, with no extra effort required
on the part of the programmer; in particular, the “ \n” representation for the end-of-line character in C/C++ in
Windows does indeed refer to the required two-byte sequence. (However, Java has a peculiarity: the println
command will generate the correct two-byte sequence, but use of “ \n” will not generate the correct sequence. A
Java program that uses “ \n” will fail during judicial testing. The sequence “ \r\n” will , however, emulate an end of
line character perfectly.) All files are terminated with the end-of-f ile marker, denoted by <EOF>, which also varies
between systems. In the Windows/DOS environment, <EOF> is handled automatically by the operating system,
and no special care need be taken to ensure that it is written properly. The team may assume that the judicial input
file will be formatted correctly—it is not necessary to check for syntax errors. The output file must be formatted
exactly to specification. For each valid input file, there will be one and only one correct output file. A program that
yields an incorrectly formatted output file will be judged to be incorrect, even if the bulk of the program performs
correctly. Each problem specification will contain a sample input and output file, but this sample need not be the
same input file used for judicial testing.

6. Shortly before the beginning of the contest, each team will receive its laptop and a packet containing a copy of
these rules. The teams are encouraged to set up their laptops, and test the compiler. If there is a problem with the

laptop, either at this time or during the contest itself, the team should contact a runner immediately; the runner will
send someone from the tech team to solve the problem. Just prior to the beginning of the competition, each team
will send one representative to a designated location to receive their packet. All teams will be given their packets
simultaneously, and the 5-hour countdown will begin at that second. Within this packet will be three copies of the
problem specifications, and some scratch paper. When a solution has been developed for a particular problem, the
team will flag a runner who will give them a flash drive on which the team will store either a prob* .exe or
prob* .jar file. The team will also give the runner a sheet of paper stating the team name and problem number. The
runner will deliver the paper and flash drive to a judge, who will mark the time of receipt. No other files should be
placed on this drive; in particular, the source code itself should not appear on the drive. The judge will execute the
submitted program against a preexisting prob* .in file. The generated prob* .out file will be compared against the
one and only correct output file. The team will be informed in writing (via runner) whether it has successfully
generated the correct output file, and in the event that the output file is incorrect, no information beyond the fact that
it is incorrect will necessarily be revealed to the team, though the judge may at his/her discretion give a vague hint
(e.g. “ it infinite loops”). Any run-time error in the program will cause the solution to be judged incorrect, even if
the correct output file is generated despite this. The sample solutions all run “ instantly” on the off icial input file;
any submitted program that takes longer than 10 seconds to execute will be considered an incorrect solution. (In
previous years, the programs had only 5 seconds to run; however, the programs generated by the C/C++ compiler
have a “ initialization delay” of about 5 seconds when run on Windows XP. The new time reflects this.) The off icial
input files will not be revealed to the teams or to any member thereof until after the competition has terminated. The
team will be allowed to submit as many solutions as they like to a problem (with a penalty, see below).

7. All communication between the judges and contestants will occur via intermediaries, known as runners. Any
question or request must be made in writing and handed to a runner who will deliver the message to a judge. The
judge's response will also be in writing. At no time during the competition are the judges and contestants to
communicate face-to-face. The runners may also be used to obtain paper copies of programs in progress. A team
may request a flash drive to store a file to be printed; the runner will return with the printout.

8. All attempted solutions will be archived by the judges. There will be no known error in the problems by any of
the judges prior to the competition, but if an error is discovered in either the problems or the judging during the
course of the competition or during the course of a challenge afterward, the archived solutions will be reexamined
and the scores retabulated based on these results. Aside from this retabulation, no further remedy will be offered.
(In particular, if a team uses a large part of its resources to ferret out a non-existent bug in an improperly rejected
solution, it will not be offered compensatory time.) However, as stated, care will be taken to prevent errors from
occurring before the competition begins, so that, we hope, this situation will not arise.

9. Any attempt by the executed program to copy or damage the preexisting input file in any fashion or to demean
the integrity of the contest in any way will result in the immediate disquali fication of the submitting team.

10. Scoring is determined by a pair of integers as follows: The count for each team is the number of problems
solved. The total for each team is the total number of minutes required to solve each problem starting from the
beginning of the contest. A penalty of 20 minutes is added to the total for each unsuccessful attempted solution of a
problem, provided that a correct solution of that problem is eventually submitted. More precisely: at the beginning
of the competition, count and total are initialized to zero. Upon the evaluation of a correct submission, count is
incremented by one, total is incremented by the number of minutes between the start of the contest and the
submission of the executable, and total is further incremented by 20 for each incorrect solution to the problem
submitted prior to the correct one.

11. Team ranking is determined by each team's count, with the highest count being ranked first. Ties are broken by
total, in favor of the team with the lowest total. Any subsequent ties remain unbroken. With this in mind, it is to
the team's advantage to seek out and complete the easier problems first, as this will result in a smaller total.
However, keep in mind as well that diff iculty is a matter of individual perception, and that the problems are given in
no particular order.

12. Schools may submit as many teams as they care to. School ranking is determined by summing the count values
and summing the total values of the three highest-ranking teams aff ili ated with that school. These aggregate values
are used as above to rank the participating schools. Schools that submit fewer than three teams are thus

disadvantaged in the school ranking; however, schools that submit more than three teams have no gross advantage,
in that most schools can predict which of their teams will be the three highest-ranking. Note that ties only occur if
both count and total are identical, so if there is more than one team in third place, it does not matter which is added
to the aggregate score.

13. Schools are not constrained to submitting a number of contestants that is divisible by three. Teams must not
contain more than three members, but may contain fewer. Additionally, individuals unaff ili ated with a team may
attend as well and may form teams with other unaff ili ated individuals from their own or other schools or from no
school. Such hybrid teams are entitled to their team ranking and to any formal acknowledgement thereof, but their
scores cannot be figured into the aggregate score for any school under any circumstance.

REMINDERS

1. When a program fails, the team will be only be told that it failed; no specific reason will necessar ily be
given. You may have made a simple careless error such as those described below.

2. Failure to format the output f ile exactly as specified will cause the program to fail .

3. Failure to name the submission, input, and output f iles exactly as specified will cause the program to fail .

4. Reading input from the keyboard or specifying input from a Graphical User Interface will cause the
program to fail .

5. Screen and graphical output will be absolutely ignored.

6. You will be penalized for programs that fail .

7. <EOLN> and <EOF> in the specifications refer to the end-of-line and end-of-f ile markers. They do not
represent the li teral str ings “ <EOLN>” and “ <EOF>” . Similar ly, each space in the sample input and output
files will be represented by Ü�

INSPIRATION AND DIFFERENCES

This competition is modeled on the ACM International Programming Contest. Here are some ways in which this
competition differs from the one sponsored by the ACM.

1. The winner(s) of this competition do not compete in a higher competition following this one. This buck stops
here.

2. In this contest, according to the off icial rules, no reason will necessarily be given whatsoever for a program
failure, as the ACM has several (overlapping and confusing, in my opinion) categories in which errors can lie.
However, in the past, the contest judge (who is also the author of these rules) hasn't had the heart to be brutally
binary in all judgments. The judge reserves the right to give nonspecific information pertaining to a failure as long
as it is done in a fair and impartial manner.

3. All problems in this competition are specified completely without ambiguity. There is one and only one correct
output file for every valid input file. The ACM competition allows for a certain amount of ambiguity.

4. There is no designation in this competition between off icial and unoff icial teams. All teams are welcome to
participate. The only caveat is that hybrid teams from multiple schools or containing non-students as members may
not contribute to any aggregate school score.

5. All registered students are eligible to compete for the school they attend. The ACM competition limits the
participation of graduate students.

REDIRECTING INPUT AND OUTPUT

Many participants in these competitions wonder how to read program input from a file and how to write program
output to a file, rather than using standard input and output. Here is how to do it in some languages; if you're using a
different language, you'll have to look it up on your own.

C:

FILE *in, *out;
.
.
.
in = fopen ("prob1.in","r");
out = fopen ("prob1.out","w");
.
.
.
fscanf (in,...);
fprintf (out,...);

C++:

ifstream in ("prob1.in");
ofstream out ("prob1.out");
.
.
.
in >> ...;
out << ...;

Java: (Notice the new way to redirect input provided in Java 5!!);

Scanner in = new Scanner (new File ("prob1.in"));
PrintStream out = new PrintStream (new FileOutputStream ("prob1.out"));
.
.
.
... = in.nextLine();
out.println (...);

Java programmers should be sure to learn about the new Scanner class; it appears to be much easier to use than the
old BufferedReader class (which is still available).

Sample Questions

My Web Page always has old problems and solutions from this and from other similar competitions. Check it out:
http://euclid.nmu.edu/~apoe

Using TextPad

TextPad is the world's easiest editor/compiler. Just follow these simple guidelines and you should have no trouble
submitting programs in the contest.

1. Every file you make is a text file. There are no “Project” files or any other nasty bloated thing you have to worry
about.

2. Use the File menu to create new documents, to open existing documents or to save documents. Java files should
end in .java . You can save C/C++ files with .c, .cpp, or .cc .

3. Use the Tools menu to compile and run C, C++, and Java. If you are using Java, compile the Java file containing
the main method. The compiler will correctly compact all the generated classes (including ones in different source
code files) into a single executable Jar file.

4. When you hand in a solution in C or C++, put the executable (.exe file) on your disc. Nothing else. Don't waste
my time with the source code. If you are using Java, put the .jar file on your disc.

5. That's it!!!!

Submitting Solutions Addendum

Although NMU is broke, it recently approved the purchase of flash drives specifically for this contest. There will be
no more tedious burning of CD's! When a team is ready to submit, it will signal a runner who will hand it a flash
drive. A member of the team will t hen plug the flash drive into a USB port, and then drag and drop the appropriate
file (prob* .exe or prob* .jar) onto the drive. The runner will return this drive along with a sheet of paper
identifying the team and the problem to the judge. Note that runners themselves may or may not have technical
expertise and may or may not be able to assist the team in transferring the file.

