
NMU PROGRAMMING CONTEST #21

Saturday 23 March 2024

1. A team consists of at most three members. Each team will have a single computer at its disposal

to develop solutions to the assigned problems. The team may share use of the computer in any way

it sees fit to do so. The team may solve the problems individually or collectively at its discretion.

However, a team member may not communicate—personally, electronically, or otherwise—with

anyone other than a judge (via runner) or another member of the same team during the contest.

2. The judges will be happy to answer questions of clarification during the contest and are willing to

assist with technical difficulties, but they cannot provide any hints or information relating to how

the problems should be solved.

3. There are 6 problem specifications and 5 hours in which to solve them. The problems need not be

of equivalent difficulty with each other and are given in no particular order. The team may solve the

problems with the C, C++, C#, Java, Python, or Kotlin languages. The team is not constrained to

using the same language for each problem; each problem is solved completely independently of the

others. If a problem is solved with C, C++, or C#, the team is to generate a single file called

prob*.exe , where * (defined here and used hereafter) is the digit between 1 and 6 corresponding to

the problem being solved, a DOS executable file compatible with Windows 11, the system on which

the problems will be judged. If a problem is solved with Java or Kotlin, the team is to generate a

single file called prob*.jar , an executable Java file, which will also be run in the Windows 11

environment. Compilers for C, C++, C#, Java, and Kotlin will be provided. The Java provided will

be the most recent version at the time of the imaging of the laptops for the contest. If a problem is

solved with Python, the team is to generate a single file called prob*.py . Python 2 and Python 3 are

both acceptable. It should be understood that the problems were defined with Java in mind, and

that the official solutions will be in Java. The team may use any printed reference materials during

the contest but is disallowed from using the Internet and from using media (such as magnetic,

optical, or solid state) specifically designed for computer reading.

4. The executed program will open an existing file, prob*.in , for reading, and will create and open a

file, prob*.out, for writing. The program must use these files and no others. The use of other files

will cause the program to fail during judicial testing. Any output sent to the screen will be ignored

by the judges; only the output sent to prob*.out will be evaluated. The judge will not enter

information to the program via the keyboard, so any attempt to read from the keyboard will cause

the program to hang during judicial testing, thus disqualifying it (see below). If Java is used to solve

a problem, it must be run as an application, rather than an applet; applets cannot access or modify

files. Any graphical output will be ignored; any request for GUI input will be ignored, thus

disqualifying the program, as above.

5. prob*.in and prob*.out are text files. They will be constrained to containing only the 94 visible

ASCII characters, the space character (no program will be required to parse or print a <TAB>

character) and the end-of-line character, which varies between systems and will be denoted by

<EOLN>. In the Windows/DOS environment, <EOLN> is actually represented by two consecutive

ASCII characters: 13,10. Most programming languages developed for the Windows environment

handle this two-byte representation naturally, with no extra effort required on the part of the

programmer; in particular, the “\n” representation for the end-of-line character in C/C++ in

Windows does indeed refer to the required two-byte sequence. (However, Java has a peculiarity: the

println command will generate the correct two-byte sequence, but use of “\n” will not generate the

correct sequence. A Java program that uses “\n” will fail during judicial testing. The sequence

“\r\n” will, however, emulate an end of line character perfectly.) All files are terminated with the

end-of-file marker, denoted by <EOF>, which also varies between systems. In the Windows/DOS

environment, <EOF> is handled automatically by the operating system, and no special care need be

taken to ensure that it is written properly. The team may assume that the judicial input file will be

formatted correctly—it is not necessary to check for syntax errors. The output file must be formatted

exactly to specification. For each valid input file, there will be one and only one correct output file.

A program that yields an incorrectly formatted output file will be judged to be incorrect, even if the

bulk of the program performs correctly. Each problem specification will contain a sample input and

output file, but this sample need not be the same input file used for judicial testing.

6. Shortly before the beginning of the contest, each team will receive its laptop and their first packet

containing a copy of these rules, a laptop instruction guide, and one flash drive. The teams are

encouraged to set up their laptops, and test the compiler. If there is a problem with the laptop,

either at this time or during the contest itself, the team should contact a runner immediately; the

runner will send someone from the tech team to solve the problem. Just prior to the beginning of the

competition, each team will send one representative to a designated location to receive their second

packet. All teams will be given their packets simultaneously, and the 5-hour countdown will begin

at that second. Within this packet will be three copies of the problem specifications, submission

slips, and some scratch paper. When a solution has been developed for a particular problem, the

team will flag a runner who will accept from them a flash drive on which the team will have stored

either a prob*.exe or prob*.jar file. The team will also give the runner a submission slip stating the

school name, the team name, the room number, the problem number, and the language used (if

Python, Python 2 or 3 must be stated explicitly). The runner will give the team a blank

(replacement) flash drive and will deliver the paper and flash drive to a judge, who will mark the

time of receipt. No other files should be placed on the flash drive; in particular, the source code itself

should not appear on the drive. The judge will execute the submitted program against a preexisting

prob*.in file. The generated prob*.out file will be compared against the one and only correct output

file. The team will be informed in writing (via runner) whether it has successfully generated the

correct output file, and in the event that the output file is incorrect, no information beyond the fact

that it is incorrect will necessarily be revealed to the team, though the judge may at his/her

discretion give a vague hint (e.g. “it infinite loops”). Any run-time error in the program will cause

the solution to be judged incorrect, even if the correct output file is generated despite this. The

sample solutions all run “instantly” on the official input file; any submitted program that takes

longer than 10 seconds to execute will be considered an incorrect solution. The official input files

will not be revealed to the teams or to any member thereof until after the competition has

terminated. The team will be allowed to submit as many solutions as they like to a problem (with a

penalty, see below).

7. All communication between the judges and contestants will occur via intermediaries, known as

runners. Any question or request must be made in writing and handed to a runner who will deliver

the message to a judge. The judge's response will also be in writing. At no time during the

competition are the judges and contestants to communicate face-to-face. The runners may also be

used to obtain paper copies of programs in progress. A team may give a runner a flash drive with a

file to be printed; the runner will give the team a replacement flash drive and will return with the

printout.

8. All attempted solutions will be archived by the judges. There will be no known error in the

problems by any of the judges prior to the competition, but if an error is discovered in either the

problems or the judging during the course of the competition or during the course of a challenge

afterward, the archived solutions will be reexamined and the scores retabulated based on these

results. Aside from this retabulation, no further remedy will be offered. (In particular, if a team

uses a large part of its resources to ferret out a non-existent bug in an improperly rejected solution,

it will not be offered compensatory time.) However, as stated, care will be taken to prevent errors

from occurring before the competition begins, so that, we hope, this situation will not arise.

9. Any attempt by the executed program to copy or damage the preexisting input file in any fashion

or to demean the integrity of the contest in any way will result in the immediate disqualification of

the submitting team.

10. Scoring is determined by a pair of integers as follows: The count for each team is the number of

problems solved. The total for each team is the total number of minutes required to solve each

problem starting from the beginning of the contest. A penalty of 20 minutes is added to the total for

each unsuccessful attempted solution of a problem, provided that a correct solution of that problem is

eventually submitted. More precisely: at the beginning of the competition, count and total are

initialized to zero. Upon the evaluation of a correct submission, count is incremented by one, total is

incremented by the number of minutes between the start of the contest and the submission of the

executable, and total is further incremented by 20 for each incorrect solution to the problem

submitted prior to the correct one.

11. Team ranking is determined by each team's count, with the highest count being ranked first.

Ties are broken by total, in favor of the team with the lowest total. Any subsequent ties remain

unbroken. With this in mind, it is to the team's advantage to seek out and complete the easier

problems first, as this will result in a smaller total. However, keep in mind as well that difficulty is

a matter of individual perception, and that the problems are given in no particular order.

12. Schools may submit as many teams as they care to. School ranking is determined by summing

the count values and summing the total values of the three highest-ranking teams affiliated with

that school. These aggregate values are used as above to rank the participating schools. Schools

that submit fewer than three teams are thus disadvantaged in the school ranking; however, schools

that submit more than three teams have no gross advantage, in that most schools can predict which

of their teams will be the three highest-ranking. Note that ties only occur if both count and total are

identical, so if there is more than one team in third place, it does not matter which is added to the

aggregate score.

13. Schools are not constrained to submitting a number of contestants that is divisible by three.

Teams must not contain more than three members, but may contain fewer. Additionally, individuals

unaffiliated with a team may attend as well and may form teams with other unaffiliated individuals

from their own or other schools or from no school. Such hybrid or independent teams are entitled to

their team ranking and to any formal acknowledgement thereof, but their scores cannot be figured

into the aggregate score for any school under any circumstance.

14. A grad student is defined as being a registered student already holding a bachelor's degree or

equivalent. A grad team is defined as a team containing at least one grad student. Grad teams are

allowed to compete and are entitled to any award they may win.

REMINDERS

1. When a program fails, the team will be only be told that it failed; no specific reason will

necessarily be given. You may have made a simple careless error such as those described below.

2. Failure to format the output file exactly as specified will cause the program to fail.

3. Failure to name the submission, input, and output files exactly as specified will cause the

program to fail.

4. Reading input from the keyboard or specifying input from a Graphical User Interface will cause

the program to fail.

5. Screen and graphical output will be absolutely ignored.

6. You will be penalized for programs that fail.

7. <EOLN> and <EOF> in the specifications refer to the end-of-line and end-of-file markers. They

do not represent the literal strings “<EOLN>” and “<EOF>”. Similarly, each space in the sample

input and output files will be represented by ·.

INSPIRATION AND DIFFERENCES

This competition is modeled on the ACM International Programming Contest. Here are some ways

in which this competition differs from the one sponsored by the ACM.

1. The winner(s) of this competition do not compete in a higher competition following this one. This

buck stops here.

2. In this contest, according to the official rules, no reason will necessarily be given whatsoever for a

program failure, as the ACM has several (overlapping and confusing, in my opinion) categories in

which errors can lie. However, in the past, the contest judge (who is also the author of these rules)

hasn't had the heart to be brutally binary in all judgments. The judge reserves the right to give

nonspecific information pertaining to a failure as long as it is done in a fair and impartial manner.

3. All problems in this competition are specified completely without ambiguity. There is one and

only one correct output file for every valid input file. The ACM competition allows for a certain

amount of ambiguity.

4. There is no designation in this competition between official and unofficial teams. All teams are

welcome to participate. The only caveat is that hybrid teams from multiple schools or containing

non-students as members may not contribute to any aggregate school score.

5. All registered students are eligible to compete for the school they attend. The ACM competition

limits the participation of graduate students.

REDIRECTING INPUT AND OUTPUT

Many participants in these competitions wonder how to read program input from a file and how to

write program output to a file, rather than using standard input and output. Here is how to do it in

some languages; if you're using a different language, you'll have to look it up on your own.

C:

FILE *in, *out;

.

.

.

in = fopen ("prob1.in","r");

out = fopen ("prob1.out","w");

.

.

.

fscanf (in,...);

fprintf (out,...);

.

.

.

fclose (in);

fclose (out);

C++:

ifstream in ("prob1.in");

ofstream out ("prob1.out");

.

.

.

in >> ...;

out << ...;

.

.

.

in.close();

out.close();

C#:

StreamReader in = new StreamReader ("prob1.in");

StreamWriter out = new StreamWriter ("prob1.out");

.

.

.

... = in.ReadLine();

out.WriteLine (...);

.

.

.

in.Close();

out.Close();

Java:

Scanner in = new Scanner (new File ("prob1.in"));

PrintWriter out = new PrintWriter ("prob1.out");

.

.

.

... = in.nextLine();

out.println (...);

.

.

.

in.close();

out.close();

Python:

In = open ('prob1.in','r')

Out = open ('prob1.out','w')

.

.

.

In.close()

Out.close()

Kotlin:

val in = Scanner (File ("prob1.in"))

val out = PrintWriter ("prob1.out")

.

.

.

... = in.nextLine()

out.println (...)

.

.

.

in.close()

out.close()

Sample Questions

My Web Page always has old problems and solutions from this and from other similar competitions.

Check it out: http://philos.nmu.edu/index.html

Using TextPad

TextPad is the world's easiest editor/compiler. Just follow these simple guidelines and you should

have no trouble submitting programs in the contest.

1. Every file you make is a text file. There are no “Project” files or any other nasty bloated thing you

have to worry about.

2. Use the File menu to create new documents, to open existing documents or to save documents.

Java files should end in .java . C files should end in .c . C++ files should end in .cpp . C# files

should end in .cs . Python files should end in .py ; Kotlin files should end in .kt .

3. Use the Tools menu to compile and run C, C++, C#, Java, Python, and Kotlin. If you are using

Java or Kotlin, compile the file containing the main method. The compiler will correctly compact all

the generated classes (including ones in different source code files) into a single executable Jar file.

4. When you hand in a solution in C, C++, or C#, put the executable (.exe file) on your flash drive.

Nothing else. Don't waste my time with the source code. If you are using Java or Kotlin, put the .jar

file on your flash drive. If you are using Python, put the .py file on your flash drive.

5. That's it!!!!

