ooo~NoOUhhWNE

/* Problem 5--Slow Sorting

This is a classic algorithm. While you sort the array with Merge
Sort, you count the inversions at each step. Si nce the data cases
were very large (several were a million in lengt h) if you counted
the inversions one at a time, you'd run out of t ime. Also, you

need to store the answer in a long. */

import java .io .*;
import java . util .*;

public class prob5 {

}

private static Scanner in ;
private static PrintWriter out ;
private static int cs;

private static String [] Words;

public static void main (String [] args) throws Exception {

in = new Scanner (new File ("prob5.in") ;
out = new PrintWriter ("prob5.out");

cs = 1,

while (true) {

int len = in.nextint () ;

if (len ==0) break ;
in . nextLine () ;
Words = new String [len];

for (int i=0; i <len; i++) Words[i] = in.next () ;
out . printf ("Case %d: You would have to exchange at least %d "
"adjacent pairs.\r\n\r\n" , CS ++, invcount (Words)) ;
in . close () ;
out .close () ;

}

public static long invcount (String [] A) throws Exception {

if (A.length <= 1) return O;

String [] B = new String [(A. length +1)/2];

String [] C = new String [A.length /2]; /*Splitlistin half*/
for (int i=0; i < B.length ; i++) B[i] = Ali];

for (int i=0; i < C.length ; i++) C[i] = A[B.length +i];

long ic = invcount (B)+invcount (C); /*Recursively sortand count*/
int j=0, k=0; /*Startthe merge of the sorted lists */
for (int i=0; i < A length ; i++)
if (k==C.length || j < B.length && B[]j].compareTo (C[Kk]) <= 0)

A[i]=B[]j++]; [/*If nextelementis from the first list, good */

else { /*If next element is from the second list */
A[i]=C[k++]; [*add to the count all the elements that element *
ic += B.length -j; /*would skip over */

}

return ic ;

}

