NMU PROGRAMMING CONTEST #10
Saturday 28 March 2009

1. Ateam consists of at most three members. Esoh will have a single computer at its disposalevelop
solutions to the assigned problems. The team maneaise of the computer in any way it sees fitdgo. The
team may solve the problems individually or coileslly at its discretion. However, a team membey mat
communicate—personally, electronically, or otherwisgith anyone other than a judge (via runner) ortleo
member of the same team during the contest.

2. The judges will be happy to answer questiondarification during the contest and are willirgassist with
technical difficulties, but they cannot provide drigts or information relating to how the problest®uld be
solved.

3. There are 6 problem specifications and 5 himuvghich to solve them. The problems need notftegaivalent
difficulty with each other and are given in no partar order. The team may solve the problems wiehC, C++,
C#, or Java languages. The team is not constrainesing the same language for each problem; paatiiem is
solved completely independently of the othersa piroblem is solved with C, C++, or C#, the teartmigenerate a
single file calledorob*.exe , where * (defined here and used hereafter) islig between 1 and 6 corresponding to
the problem being solved, a DOS executable filegatible with Windows XP, the system on which thelppems
will be judged. If a problem is solved with Jattee team is to generate a single file capeab*.jar , an
executable Java file, which will also be run in WWexdows XP environment. Compilers for C, C++, @#d Java
will be provided. The Java provided will be theshecent version at the time of the imaging oflépgops for the
contest, and will be no earlier than 1.6.0_13shtiuld be understood that the problems were defirigdlava in
mind, and that the official solutions will be invda The team may use any printed reference mbtehiging the
contest but is disallowed from using the Intermet #om using media (such as magnetic or optigarHically
designed for computer reading.

4. The executed program will open an existing filob*.in , for reading, and will create and open a file,
prob*.out, for writing. The program must use these filed an others. The use of other files will cause the
program to fail during judicial testing. Any outent to the screen will be ignored by the judgesy the output
sent toprob*.out will be evaluated. The judge will not enter infaation to the program via the keyboard, so any
attempt to read from the keyboard will cause tlegpmm to hang during judicial testing, thus disgyelg it (see
below). If Java is used to solve a problem, it nfagsrun as an application, rather than an apppgitets cannot
access or modify files. Any graphical output vaidl ignored; any request for GUI input will be igady thus
disqualifying the program, as above.

5. prob*.in andprob*.out are text files. They will be constrained to camiteg only the 94 visible ASCII
characters, the space character (no program wikdpeired to parse or print<d AB> character) and the end-of-
line character, which varies between systems atid&idenoted bgxEOLN>. In the Windows/DOS environment,
<EOLN> is actually represented by two consecutive AS@dracters: 13,10. Most programming languages
developed for the Windows environment handle this-byte representation naturally, with no extradffequired
on the part of the programmer; in particular, th¢ fepresentation for the end-of-line characte€i€++ in
Windows does indeed refer to the required two-gguence. (However, Java has a peculiarity: rihdmp
command will generate the correct two-byte sequéenaeuse of “\n” will not generate the correctsence. A
Java program that uses “\n” will fail during judittesting. The sequence “\r\n” will, however, déate an end of
line character perfectly.) All files are terminateith the end-of-file marker, denoted ¥OF>, which also varies
between systems. In the Windows/DOS environmeBQF> is handled automatically by the operating system,
and no special care need be taken to ensure ibawittten properly. The team may assume thajutieial input
file will be formatted correctly—it is not necessaoycheck for syntax errors. The output file mustformatted
exactly to specification. For each valid input file, thewill be one and only one correct output file. A program that
yields an incorrectly formatted output file will lpgdged to be incorrect, even if the bulk of thegram performs
correctly. Each problem specification will contaisample input and output file, but this sampledneot be the
same input file used for judicial testing.

6. Shortly before the beginning of the contestheaam will receive its laptop and their first paccontaining a
copy of these rules, a laptop instruction guidel, @me flash drive. The teams are encouraged tapstteir laptops,



and test the compiler. If there is a problem wlith laptop, either at this time or during the cenitself, the team
should contact a runner immediately; the runnel seihd someone from the tech team to solve thelgmrobJust
prior to the beginning of the competition, eachmesill send one representative to a designateditotéo receive
their second packet. All teams will be given thgckets simultaneously, and the 5-hour countdoilirbegin at
that second. Within this packet will be three espdf the problem specifications and some scradplep When a
solution has been developed for a particular prabte team will flag a runner who accept from theeftash drive
on which the team will have stored eithggrab*.exe or prob*.jar file. The team will also give the runner a sheet
of paper stating the team name and problem numbee.runner will give the team a blank (replaceméash

drive and will deliver the paper and flash driveatjudge, who will mark the time of receipt. Ndet files should
be placed on the flash drive; in particular, therse code itself should not appear on the driviee judge will
execute the submitted program against a preexiptiolg?.in file. The generategrob*.out file will be compared
against the one and only correct output file. Tz will be informed in writing (via runner) whethit has
successfully generated the correct output file,iartle event that the output file is incorrect,information beyond
the fact that it is incorrect will necessarily levealed to the team, though the judge may at higikeretion give a
vague hint (e.g. “it infinite loops”). Any runrtie error in the program will cause the solutiobégudged
incorrect, even if the correct output file is geated despite this. The sample solutions all rasténtly” on the
official input file; any submitted program that &sklonger than 10 seconds to execute will be cersitan
incorrect solution. The official input files witlot be revealed to the teams or to any memberdhargil after the
competition has terminated. The team will be aldwo submit as many solutions as they like tooblem (with a
penalty, see below).

7. All communication between the judges and cdates will occur via intermediaries, known as ruisneAny
question or request must be made in writing andl@drno a runner who will deliver the message todg¢. The
judge's response will also be in writing. At nméi during the competition are the judges and ctarésto
communicate face-to-face. The runners may alagskd to obtain paper copies of programs in progrageam
may give a runner a flash drive with a file to wfed; the runner will give the team a replacendiash drive and
will return with the printout.

8. All attempted solutions will be archived by fheges. There will be no known error in the pesb$ by any of
the judges prior to the competition, but if an eisodiscovered in either the problems or the jndgiuring the
course of the competition or during the course dfallenge afterward, the archived solutions wellrbexamined
and the scores retabulated based on these ressitse from this retabulation, no further remedyl e offered.
(In particular, if a team uses a large part ofésources to ferret out a non-existent bug in giraperly rejected
solution, it will not be offered compensatory tilnédowever, as stated, care will be taken to preeemors from
occurring before the competition begins, so thathepe, this situation will not arise.

9. Any attempt by the executed program to copgasnage the preexisting input file in any fashiotoodemean
the integrity of the contest in any way will resialtthe immediate disqualification of the submigtiteam.

10. Scoring is determined by a pair of integer®fgws: Thecount for each team is the number of problems
solved. Theotal for each team is the total number of minutes megluio solve each problem starting from the
beginning of the contest. A penalty of 20 minugeadded to thé&tal for each unsuccessful attempted solution of a
problem, provided that a correct solution of thatipem is eventually submitted. More preciselytha beginning

of the competitioncount andtotal are initialized to zero. Upon the evaluation abarect submissiorcount is
incremented by ondotal is incremented by the number of minutes betweerstart of the contest and the
submission of the executable, aothl is further incremented by 20 for each incorredtition to the problem
submitted prior to the correct one.

11. Team ranking is determined by each teaoisit, with the highestount being ranked first. Ties are broken by
total, in favor of the team with the lowesttal. Any subsequent ties remain unbroken. Withithigind, it is to

the team's advantage to seek out and completasher @roblems first, as this will result in a skaatotal.

However, keep in mind as well that difficulty isvatter of individual perception, and that the peoh$ are given in
no particular order.

12. Schools may submit as many teams as theyt@ai®chool ranking is determined by summingdbent values
and summing theotal values of the three highest-ranking teams afitiatith that school. These aggregate values



are used as above to rank the participating sch&@isools that submit fewer than three teamshare t
disadvantaged in the school ranking; however, dshithat submit more than three teams have no gibssntage,

in that most schools can predict which of theinteawill be the three highest-ranking. Note thes nly occur if
bothcount andtotal are identical, so if there is more than one teathird place, it does not matter which is added
to the aggregate score.

13. Schools are not constrained to submittingrabrar of contestants that is divisible by threearis must not
contain more than three members, but may contaierfe Additionally, individuals unaffiliated with @am may
attend as well and may form teams with other ulatiéid individuals from their own or other schootsfrom no
school. Such hybrid or independent teams ardeuhtiv their team ranking and to any formal ackrezlgement
thereof, but their scores cannot be figured ineoabgregate score for any school under any cir@anost

REMINDERS

1. When a program fails, the team will be only bedid that it failed; no specific reason will necessdy be
given. You may have made a simple careless erranch as those described below.

2. Failure to format the output file exactly as specified will cause the program to fail.
3. Failure to name the submission, input, and outg files exactly as specified will cause the program to fail.

4. Reading input from the keyboard or specifyingriput from a Graphical User Interface will cause the
program to fail.

5. Screen and graphical output will be absolutelignored.
6. You will be penalized for programs that fail.

7. <EOLN> and <EOF> in the specifications refer tahe end-of-line and end-of-file markers. They dmot
represent the literal strings “<EOLN>" and “<EOF>". Similarly, each space in the sample input and oput
files will be represented by-.

INSPIRATION AND DIFFERENCES

This competition is modeled on the ACM InternatioReogramming Contest. Here are some ways in witiish
competitiondiffers from the one sponsored by the ACM.

1. The winner(s) of this competition do not congp@ta higher competition following this one. Thisck stops
here.

2. In this contest, according to the official mjl@o reason will necessarily be given whatsoewea forogram
failure, as the ACM has several (overlapping antfesing, in my opinion) categories in which erroas lie.
However, in the past, the contest judge (who is Hie author of these rules) hasn't had the hed brutally
binary in all judgments. The judge reserves tghtrio give nonspecific information pertaining téadure as long
as it is done in a fair and impartial manner.

3. All problems in this competition are specifisampletely without ambiguity. There is one andyamhe correct
output file for every valid input file. The ACM atpetition allows for a certain amount of ambiguity.

4. There is no designation in this competitionAsetn official and unofficial teams. All teams avelcome to
participate. The only caveat is that hybrid tedrom multiple schools or containing non-studentsr@snbers may
not contribute to any aggregate school score.

5. All registered students are eligible to comgetehe school they attend. The ACM competitionits the
participation of graduate students.



REDIRECTING INPUT AND OUTPUT
Many participants in these competitions wonder howead program input from a file and how to wgtegram
output to a file, rather than using standard irgnd output. Here is how to do it in some languaide®u're using a
different language, you'll have to look it up oruy@wn.

C:

FILE *in, *out;

i.n = fopen ("probl.in","r");
out = fopen ("probl.out","w");

%scanf (in,..);
fprintf (out,...);

1.‘close (in);
fclose (out);

C++:

ifstream in ("probZl.in");
ofstream out ("probl.out");

in>>..;
out << ...;

in.close();
out.close();

C#:

StreamReader in = new StreamReader ("probl.in");
StreamWriter out = new StreamWriter ("probl.out");

... =in.ReadLine();
out.WriteLine (...);

in.Close();
out.Close();



Java: (Notice the new way to redirect input preddn Java 5!');

Scanner in = new Scanner (new File ("probl.in"));
PrintStream out = new PrintWriter ("probl.out");

... = in.nextLine();
out.println (...);

in.close();
out.close();

Java programmers should be sure to learn abouteteScanner class; it appears to be much eadisetthan the
old BufferedReader class (which is still available)
Sample Questions

My Web Page always has old problems and solutiam this and from other similar competitions. Ghgout:
http://euclid.nmu.edu/~apoe

Using TextPad

TextPad is the world's easiest editor/compilerst fallow these simple guidelines and you shoulgehao trouble
submitting programs in the contest.

1. Every file you make is a text file. There ame“Project” files or any other nasty bloated thyay have to worry
about.

2. Use the File menu to create new documentéo existing documents or to save documents. filagashould
end in .java . You can save C/C++ files with cpp, or .cc . C# files should end in .cs .

3. Use the Tools menu to compile and run C, C+##4,dbd Java. If you are using Java, compile thie fle
containing the main method. The compiler will @atty compact all the generated classes (includives in
different source code files) into a single execlaalar file.

4. When you hand in a solution in C, C++, or O#, the executable (.exe file) on your disc. Noghéhse. Don't
waste my time with the source code. If you aregisiava, put the .jar file on your disc.

5. That's it!!!!



